Assessment Schedule - 2005

Calculus: Differentiate and use derivatives to solve problems (90635)

Evidence Statement

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
	and use differentiation to	1(a)	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} + 35e^{7x}$	A1	Or equivalent.	Achievement: 3 × code A
		1(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sin x} . \cos x$	A1	Or equivalent.	including at least 1 × code A1 and
Achievement		2	$y = \cos x$ $\frac{dy}{dx} = -\sin x$ When $x = \frac{\pi}{6}$, $y = \frac{\sqrt{3}}{2}$ and $\frac{dy}{dx} = -\frac{1}{2}$ $y - \frac{\sqrt{3}}{2} = -\frac{1}{2}(x - \frac{\pi}{6})$ or $x + 2y - \sqrt{3} - \frac{\pi}{6} = 0$ or $x + 2y - 2.26 = 0$ or $y = \frac{-1}{2}x + \frac{\sqrt{3}}{2} + \frac{\pi}{12}$ or $y = \frac{-1}{2}x + 1.128$	A2	Or equivalent.	1 × code A2.
		3	$\frac{\mathrm{d}R}{\mathrm{d}t} = \frac{\mathrm{d}R}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$			
			$= (42 - \frac{x}{9}) \times 20$ when $x = 300$, $\frac{dR}{dt} = \$173 \frac{1}{3} \text{ per day}$	A2	Or equivalent. Accept \$173. Units not required.	

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
	Demonstrate knowledge of concepts and techniques of differentiation.	4	$\frac{dy}{dx} = \frac{e^{3x}.4x - (2x^2 + 1)3e^{3x}}{(e^{3x})^2}$	A1, M1	Or equivalent.	Achievement with Merit:
		5	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ $= \frac{7 \sec^2 t}{5 \sec t \tan t}$ or in Cartesian form: $\frac{x^2}{25} - \frac{y^2}{49} = 1 \implies \frac{dy}{dx} = \frac{49x}{25y}$	A1, M1	Or equivalent $ \frac{7 \sec t}{5 \tan t}, \frac{7}{5 \sin t} $ $ \frac{7}{-\cos c} \cot t. $	As for Achievement plus 2 × code M1 and 2 × code M2
ı;		6	Point of inflection when: $x = \pm \frac{2}{\sqrt{3}}$ or ± 1.15 Concave down: $-1.15 < x < 1.15$	A1, M1	Accept $-1.15 \le x \le 1.15$ as MEI. Or equivalent.	6 × code M
Achievement with Merit	Solve differentiation problems.	7	$C(x) = 17x$ $P(x) = 25x - 20x \ln x$ $P'(x) = 5 - 20 \ln x$ Maximum profit when $P'(x) = 0$ $x = e^{0.25}$ $x = 1.284$ For max profit need 1284 T-shirts.	A2, M2	Must see correct derivative in any form. Units not required. Or equivalent.	
		8	$x = 30 \tan \theta$ $\frac{dx}{d\theta} = 30 \sec^2 \theta$ $\frac{dx}{dt} = -3$ $\frac{d\theta}{dt} = \frac{1}{30} \cos^2 \theta \times (-3)$ when $\theta = \frac{\pi}{4}$, $\frac{d\theta}{dt} = -\frac{1}{20} \text{ or } -0.05 \text{ rad per sec}$	A2, M2	Accept use of $\frac{dx}{dt} = 3$ to give answer of $\frac{1}{20}$ as MEI. Units not required. Or equivalent.	
		9	(a) $t = 2.5 \text{ seconds}$ (b) $a = -10 \text{ ms}^{-2}$	A2, M2	Units not required. Or equivalent. Need both (a) and (b).	

	Achie vement Criteria	Q	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve problem(s) involving a combination of differentiation techniques.	10	Similar triangles gives: $\frac{15-h}{r} = \frac{15}{9}$ $h = 15 - \frac{5}{3}r$ $V = \frac{1}{3}\pi r^2 h$ $= \frac{1}{3}\pi r^2 (15 - \frac{5}{3}r)$ $\frac{dV}{dr} = 10\pi r - \frac{5}{3}\pi r^2$ Turning points when: $\frac{dV}{dr} = 0$ $r(6-r) = 0$ when $r = 0$, 6 . When $r = 0$, $V = 0$, is a minimum, so maximum when $r = 6$. Therefore the dimensions of the smaller cone are $r = 6$ and $h = 5$. The maximum volume of the smaller cone will be $188.5 \text{ cm}^3 (60\pi)$. Optional second derivative test: $\frac{d^2V}{dr^2} = 10\pi - \frac{30}{9}\pi r$ When $r = 6$, $\frac{d^2V}{dr^2} = -31.4$ $\frac{d^2V}{dr^2} < 0$, so $r = 6$ gives max. volume.	A, M, E	Need correct first derivative. Need dimensions of smaller cone that gives max. volume. Units not required.	Achievement with Excellence: As for Merit plus code E.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Differentiate functions and use differentiation to solve problems.	Demonstrate knowledge of concepts and techniques of differentiation.	Solve problem(s) involving a combination of differentiation techniques.
3 × A including at least 1 × A1 and at least 1 × A2	Solve differentiation problems. Achievement plus 2 × M1 and 2 × M2 or 6 × M	Merit <i>plus</i> 1 × E